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Monte Carlo simulation of a planar lattice model with P4 interactions

Abhijit Pal and Soumen Kumar Roy
Department of Physics, Jadavpur University, Calcutta 700 032, India
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Monte Carlo study of a two-dimensional lattice with three-dimensional spins (d52,n53) interacting with
nearest neighbors via a2P4(cosu) potential, whereP4 is the fourth Legendre polynomial andu is the angle
between two spins, has been reported for lattice sizes ranging from 10310 to 1603160. A cluster algorithm
for spin updating with a histogram reweighting technique has been used and finite size scaling has been
performed. The model exhibits a strong first order phase transition at a dimensionless temperature 0.376
60.015. The phase transition appears to be driven by condensation of topological defects and the defect
densityD increases sharply at the transition temperature. The temperature derivativedD/dT* is found to obey
a linear scaling relation with the lattice sizeL. The behavior of the model seems to be remarkably different
from the two-dimensionalP2 model, that has been investigated by other authors, although both models possess
the same symmetry and topological defects play an important role in the phase transition.
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I. INTRODUCTION

The n-vectorO(n) models in two dimension are define
by associating with each site of a two-dimensional lattice
n-dimensional unit length spin vector. The Hamiltonian f
the O(n) models is of the same form as that of the Heise
berg model,

H52(
^ i , j &

~s i
W ,s j

W !, ~1!

where the sum is over the nearest neighbor bonds^ i , j & of the
lattice and (s i

W ,s j
W ) is the inner product of the unit vectorss i

W

ands j
W . For n52, this model reduces to the so called tw

dimensionalXY model. It is well known@1# that this system
cannot possess conventional long range order and thi
literature is referred to as the Mermin-Wagner-Berezin
theorem. The system exhibits a second-order phase trans
at the critical temperatureTc . Below Tc , the order param-
eter correlation function exhibits a quasi-long-rang
order~QLRO!, in which it decays algebraically with distanc
This was well explained in terms of topological defects
Kosterlitz and Thouless@2#, who demonstrated that vorte
unbinding leads to the QLRO-disorder transition. The tw
dimensionalO(3) model, on the other hand, is disordered
all finite temperatures. It may be noted that the system
have no stable topological defect as the spin vectors
point outside the plane@1#.

In a nematic liquid crystal, one has spatially uncorrela
spins with the dominant interaction going lik
2P2(cosgij), whereg i j is the angle between the unit vecto
sW i and sW j and P2 is the second Legendre polynomial.
three-dimensional lattice model of the nematic was int
duced by Lebwohl and Lasher@3#, where the Hamiltonian
can be written as

H52(
^ i , j &

P2~cosg i j !, ~2!

^ i , j & being the nearest neighbor pairs.
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The model can easily be generalized to then-component
spins and this may be defined as the nematicn-vector model
to distinguish it from the conventionaln-vector model which
we described earlier. It may be noted that in addition to
usualO(n) symmetry, this model posseses theZ2 symmetry,

i.e., the directionssW (x) and 2sW (x) are equivalent. The
three-dimensional nematic liquid crystal is characterized
the existence of topologically stable defects which a
known as disclination lines.

A two-dimensional nematicn-vector model withn53,
also called theRP2 model, in the recent past has been t
subject of Monte Carlo~MC! simulation by several groups o
investigators. One of the most interesting features of theRP2

model is the existence of topologically stable defects eve
two dimensions. The order parameter space is the spherS2

with opposite points identified and the homotopy group is
integers modulo 2, i.e.,)1(RPn21)5Z2 for n>3. Chiccoli
et al. @4# investigated the system for lattice sizes rangi
from 535 to 80380 and found that the heat capacity
insensitive to the system size, whereas in a system exhib
a true phase transition, systematic sharpening of the
capacity is expected. The order parameter correlation fu
tion was found to decay algebraically in the low temperat
phase and exponentially in the high temperature phase. N
ing conclusive about the nature of the phase transit
emerged from this work. A more elaborate study of the syt
using Monte Carlo method was subsequently carried ou
Kunz and Zumbach@5#. These authors found a strong ev
dence for a topological phase transition driven by conden
tion of defects. The transition was found to be associa
with a divergence of correlation length and susceptibility a
a cusp in the specific heat.

About two decades ago, Zannoni@6# proposed a generali
zation of the Maier-Saupe mean field theory of nematic l
uid crystals. Besides, using the usualP2(cosuij) term of the
orientational part of the anisotropic interactions between
molecules, the author also investigated the higher rank in
actions likePM(cosuij) with M54,6. The findings demon
strated that with increasing values ofM, the nature of the
transition becomes more markedly first order, in which t
©2003 The American Physical Society05-1
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entropy and the order parameter (^P2&) at the transition in-
creases. Subsequently, Monte Carlo simulations of a ge
alization of a three-dimensional Lebwohl-Lasher were c
ried out by Chiccoli et al. @4# and by Romano@7# for
interactions of the typeP4 and P6, respectively, and the
findings are in agreement with the predictions of Zann
@6#. This trend can be qualitatively understood in a me
field framework in the following manner. The mean fie
potential which is proportional toPM(cosu), whereu is the
angle between a molecule and the director andM even pos-
sesses (M12)/2 minima foru lying in the range@0,p# and
the minima atu50 andp become narrower and steeper wi
increasingM. Thus, with increase in the rank of the intera
tion, there is a possibility for the molecules to get trapped
any of the (M22)/2 local minima rather than being com
pletely aligned along the director. A molecule may, howev
eventually get ordered along the director when it sudde
jumps out of a local minimum trap to get into theu50 or p
position where the potential well is deeper.

More recently, Zhanget al. @8# and Priezjevet al. @9#
have included aP4 term in their study of the three
dimensional Lebwohl-Lasher model and have found that
makes the otherwise weak first-order nematic-isotropic tr
sition stronger first order.

The above mentioned research for three-dimensional
tems and, in particular, the extensive MC study of a tw
dimensional system withP2 interaction motivated us to tak
up the present work.

In a recent work@10#, we reported a limited amount o
numerical study of another two-dimensionalO(3) system
where the spins on a square lattice interact with the nea
neighbors via a2P4(cosgij) interaction, whereP4 is the
fourth Legendre polynomial. The symmetry breaking patt
of the P2 andP4 interactions are identical and topological
both models have the same homotopy class. It is, theref
of some interest to see if they behave similarly. Our init
results indicated that there is a marked difference in the
havior of the two models as the specfic heat was found
sharpen with the increase in lattice size. The free energy
exhibited a double-well structure which is indicative of
first-order phase transition. The statistics of our work w
however, not good enough to reveal the finer details of
scaling behavior of various thermodynamic quantities t
one would expect to be obeyed in a first-order phase tra
tion.

In this paper, we present the results of a more elabo
numerical study of the two-dimensionalO(3) model with
the2P4(cosgij) interaction. We have significantly improve
on our previous work in terms of a bigger lattice size a
greatly improved statistics and these resulted in different
interesting findings about theP4 model. We may point out
that the scaling behavior of some of the thermodynam
quantities which emerged from the present work are qua
tively different from what was reported in our previous wo
on theP4 model.

II. THE DEFINITION OF THE THERMODYNAMIC
QUANTITIES RELATED TO THE P4 MODEL

The Monte Carlo simulation was carried out on a squ
lattice of dimensionL3L with the three-dimensional spin
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located at each site and interacting with nearest neighbors
the Hamiltonian

H52(
i , j

P4~cosg i j !. ~3!

The specific heat is given by

CV* 5
d

dT*
^H&, ~4!

whereT* is the dimensionless temperature.CV* can also be
evaluated from the energy fluctuation

CV* 5
~^H2&2^H&2!

T*
2 . ~5!

The conventional long range order parameter is given by

^P2&5
1

2
^3 cos2u21&, ~6!

where u is the angle that a spin makes with the preferr
direction of orientation and the average is over the en
sample. The next higher rank order parameter is defined

^P4&5
1

8
^35 cos4u230 cos2u13&. ~7!

The order parameter susceptibility is defined in terms of
fluctuations of the order parameter^P2&

x5
~^P2

2&2^P2&
2!

T*
. ~8!

The second rank pair correlation coefficient is defined as

G2~r !5^P2~cosu i j !& r , ~9!

wherei and j are two spins separated by a distancer.
The topological defects present in this model will be d

scribed using the approach followed by Kunz and Zumba
@5#. The unit spin vectors at two neighboring sitesx andy are
sW (x) andsW (y). One can always map these spins on the u
sphereS2 and connect them by the shortest geodesic. F
lowing this procedure and starting from a closed loopL on
the lattice, one ends up in a loop on the manifoldRP2. The
homotopy class of the map is given by

W~L!5 )
(xy)PL

sgn@sW ~x!,sW ~y!#. ~10!
5-2
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For W(L)511, the loop would enclose an even number
defects and forW(L)521, an odd number of defects. Th
definition, however, fails for the exceptional case wh

@sW (x),sW (y)# vanishes.
It is possible to extend the above procedure to define

density of defects as

D5
1

2
@12^W~L1!&#, ~11!

whereL1 is a closed loop attached to a unit square on
lattice. It vanishes in the ground state and is expected
show an exponential increase like exp(2E0 /T* ) at low tem-
peratures,E0 being the activation energy of a pair of defec

A topological order parameter which is a measure of
pairing of defects is defined in the following manner. Wi
the periodic boundary conditions imposed, our tw
dimensional lattice would look like a torus. The topologic
order parameter is defined as

m5^W~L0!&, ~12!

where L0 is a circle enclosing the torus. At low temper
tures, where few defects are expected to be present,m should
be nonzero and should vanish at high temperatures.

III. THE COMPUTATIONAL DETAILS

The Monte Carlo simulations were performed on squ
lattices of sizeL2 for L510,20,40,80, and 160. Instead
the conventional single spin-flip Metropolis algorithm, w
use the cluster algorithm of Wolff@11#. The method is er-
godic and satisfies the detailed balance condition. The a
rithm runs as follows.

(1) A random unit vectorrW is taken and a spin flipsW x

→sW x8 is defined as

sW x85sW x22~sW x ,rW !rW. ~13!

(2) Bonds (x,y) of the lattice are activated with a probab
ity

p~x,y!512exp~min$0,bs5%!, ~14!

where,

s55s4@35~s3
222s4!215#,

s45s1s2~s32s1s2!,

s35~sW x8 ,sy
W 8!,

s25~sy
W ,rW !,

s15~sW x8 ,rW !,

and a cluster of activated bonds is thus constructed.
(3) All spins in a cluster are now flipped according

sW x→sx
W 8.
01170
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The various thermodynamic quantities were computed
ing the histogram reweighting technique of Ferrenberg a
Swendsen@12#. Briefly the method works as follows. Th
partition function of the system is given by

Z~K !5(
S

W~S!exp@KS#, ~15!

where K521/KBT, KB being the Boltzmann constant s
equal to 1.S5( i , j P4(cosgij) is a function of the spins of the
system andW(S) is the density of states. Suppose thatR
Monte Carlo simulations have been performed at tempe
turesKn ,n51, . . . ,R and the data has been stored as his
grams $Nn(S)% with the total number of configurations i
nn5(n51

R Nn . If tn is the autocorrelation time, then we de
fine a quantitygn5112tn . Then the essential multiple
histogram equation for the probabilityP(S,K) is written as

P~S,K !5

(
n51

R

gn
21Nn~S!exp@KS#

(
m51

R

nmgm
21exp@KmS2 f m#

, ~16!

where the free energyf n is given by

exp$ f n%5(
S

P~S,Kn!. ~17!

The average value of any operator onScan be evaluated as
function of K from

^A~S!&~K !5(
S

A~S!P~S,K !/z~K !, ~18!

where

z~K !5(
S

P~S,K !. ~19!

The values off n could be found self-consistently by iteratin
Eqs. ~16! and Eq.~17!. For all lattice sizes and for all tem
peratures; a straightforward iteration of these equati
worked very satisfactorily.

When simulating an unknown system, one is always fa
with two issues. The nature of the phase transition is firs
be resolved and, subsequently, the various thermodyna
quantities are to be determined. The order of the phase t
sition can conveniently be determined by the method fi
proposed by Lee and Kosterlitz@13#. For a temperature
driven first-order transition in a finite system of volumeLd

with periodic boundary conditions the histogram of the e
ergy distribution may be computed by Monte Carlo simu
tion to yield

N~E;b,L !5:Z21~b,L !V~E,L !exp~2bE!, ~20!

where b51/T, : is the number of MC sweeps,Z is the
partition function, andV(E,L) is the number of states o
energyE. For the two-dimensionalP4 model, we have in-
5-3
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vestigated thatN(E;b,L) has a characteristic double-pea
structure in the neighborhood ofTc . The two peaks atE1(L)
and E2(L) corresponding, respectively, to the ordered a
disordered states are separated by a minimum atEm(L). We
define a free-energy-like quantity

A~E;b,L,: ![2 ln N~E;b,L ! ~21!

and the bulk free-energy barrier is defined as

DF~L !5A~Em ;b,L,: !2A~E1 ;b,L,: !. ~22!

It may be noted thatA(E1 ;b,L)5A(E2 ;b,L) and DF is
independent of:. For a continuous transition,DF(L) is in-
dependent ofL and for a first-order transition it is an increa
ing function ofL. If one is in a region whereL is sufficiently
large so thatL@j, wherej is the correlation length@13#,
thenDF obeys the scaling relation

DF;Ld21. ~23!

FIG. 1. The histograms forE* , the average energy per partic
generated for the 1603160 lattice for theP4 model at 11 tempera
tures indicated.

FIG. 2. The histograms for the order parameter^P2& generated
for the 1603160 lattice for theP4 model at the temperatures ind
cated.
01170
d

Clearly, the temperature at which the double-well struct
of A has two equally deep minima gives a precise estima
of the transition temperature.

IV. RESULTS AND DISCUSSION

The MC simulations were performed forL510, 20, 40,
80, and 160 using the cluster algorithm of Wolff described
the preceding section. For each lattice size, about 10
temperatures close to transition were chosen for the sim
tion. In Figs. 1–3, we have depicted the histograms gen
ated forE* , the average energy per particle, the order
rameter̂ P2& and the order parameter^P4& for L5160. It is
clear from the histograms that there is a temperature reg
where the MC sampling takes place between the ordered
the disordered phases. These diagrams are in sharp con
to those obtained for the two-dimensionalP2 model for L
580 ~Figs. 4 and 5! for energy and̂ P2&, respectively@14#.

In Table I, we have presented the details of our simu
tion. For each lattice size, the simulations were carried
for the temperatures indicated. The number of Wolff clust

FIG. 3. The histograms for the order parameter^P4& for the
1603160 lattice for theP4 model at the temperatures indicated.

FIG. 4. The histograms for energy per particleE* generated
for the 80380 lattice for theP2 model @14# at 15 temperatures
indicated.
5-4
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TABLE I. T* is the dimensionless temperature,L is the lattice size,nc is the number of Wolff clusters, which for all lattices exce
1603160 and at all temperatures is 109, ^c& is the average cluster size, MCS is the number of equivalent Monte Carlo sweeps~see text! in
units of 109, andt is the autocorrelation time for energy~in units of Wolff clusters!.

L5160
T* 0.37525 0.3756 0.3757 0.37575 0.3758 0.37585 0.3759 0.37595 0.376 0.376125 0.37625
nc 109 53109 53109 1010 53109 53109 109 109 109 109 109

^c& 17157 17095 17094 17079 16892 16848 16825 16796 16781 16763 16759
MCS 0.670 3.338 3.338 6.671 3.299 3.219 0.657 0.656 0.655 0.654 0.654
t 3932 6154 182302 420000 190332 76334 48813 40000 11600 3596 2986

L580
T* 0.37 0.372 0.374 0.375 0.37575 0.376 0.37625 0.3765 0.37675 0.377 0.378
^c& 4569 4529 4461 4419 4367 4331 4269 4214 4183 4169 4114 40
MCS 0.714 0.707 0.697 0.69 0.682 0.677 0.667 0.658 0.654 0.651 0.643 0
t 204 261 617 1130 18806 33832 48653 16024 15958 7112 718 4

L540
T* 0.36 0.365 0.37 0.3725 0.375 0.376 0.377 0.37725 0.3775 0.37825 0.38 0
^c& 1210 1195 1173 1159 1138 1130 1098 1092 1080 1052 1017 8
MCS 0.756 0.747 0.733 0.724 0.711 0.706 0.686 0.683 0.675 0.658 0.636 0
t 86 104 168 267 1610 6400 7895 9097 5813 4497 645 7

L520
T* 0.35 0.36 0.37 0.375 0.378 0.38 0.383 0.39 0.41 0.43
^c& 315 311 303 295 287 280 263 236 179 123
MCS 0.788 0.778 0.758 0.736 0.716 0.700 0.658 0.590 0.448 0.308
t 67 77 154 784 934 1157 853 171 32 17

L510
T* 0.35 0.36 0.37 0.38 0.385 0.39 0.40 0.41 0.42 0.43
^c& 81 80 79 76 73 70 62 56 51 46
MCS 0.810 0.800 0.790 0.760 0.730 0.700 0.620 0.560 0.510 0.460
t 61 96 134 191 246 247 145 68 38 21
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generated ranges from 109 to 1010 and the average cluste
size for each temperature is also shown in the table. I
evident from the table that for a given lattice, the avera
size of the Wolff cluster decreases with increase in temp
ture. The maximum cluster size occurred for the smal
lattice, namely, 81.4% and this decreased with increas
the lattice size. For theL5160 lattice, the average cluste

FIG. 5. The histograms for the order parameter^P2& for the
80380 lattice for theP2 model @14# at the temperatures indicated
01170
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size varied from 67% to 65.5%, for the temperature ran
we studied.~It must, however, be noted that this may be d
to a smaller temperature range over which the simulati
were carried out for the larger lattices!. We have also pre-
sented the equivalent number of MC sweeps and the a
correlation time~in the number of Wolff clusters! in the

FIG. 6. The percentage error in the reweighted histograms p
ted againstE* for L5160. The graph has been obtained usi
Eq. 24.
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table. One MC sweep has been taken as the amount of c
puter run where all particles in a lattice have been on aver
flipped once. The autocorrelation time increases rapidly w
the increase in lattice size and possesses a sharp maxim
the transition temperature.

The error in estimating the probabilityP(S,K) in the his-
tograms is given by

dP~S,K !5
1

F(
n

gn
21Nn~S!G P~S,K !. ~24!

This could be estimated directly from the histograms. T
error is maximum for the largest lattice where the autoco
lation time is large. Figures 6 and 7 show the relative erro
P(S,K) for the latticesL580 and 160. In the neighborhoo
of E* 521.22, the error has a peak value of about 3.5

FIG. 7. The percentage error in the reweighted histograms p
ted againstE* for L580. The graph has been obtained usi
Eq. 24.

FIG. 8. The average energy per particleE* plotted against the
dimensionless temperatureT* for different lattice sizes. These
graphs have been generated from the energy histograms show
Fig. 1 using the multiple histogram reweighting~Eq. 15–18 of text!.
An idea of the error involved in these plots may be obtained fr
the error plots in Figs. 6 and 7.
01170
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whereas it is about 0.7% near the energies where the h
grams have peaks. It may be pointed out that it will be a v
difficult task to reduce the errors in the neighborhood
E* 521.22. This is evident because of the nature of
histograms~Fig. 1!. The configurations generated have tw
more or less sharp peaks with relatively few configuratio
lying in the mid-range. Increasing the number of configu
tions further is unlikely to reduce the error in the regio
between the peaks by any significant amount.

The histogram reweighting of these results yielded
variation of energy and order parameters as functions of t
perature~Figs. 8, 9, and 10!. The reweighting technique o
Ferrenberg and Swendsen was evoked also to generat
free-energy-like quantityA from the energy histograms an
the free-energy barrierDF(L) could be obtained. A plot of
free energyA vs energyE* for different values ofL is shown
in Fig. 11, which clearly shows how the barrier height gro
with L. The scaling relation Eq.~23! has been tested in Fig
12 whereDF has been plotted againstL and a good linear fit
has been obtained. It may be remarked that from the rela

t-

in

FIG. 9. The order parameter^P2& plotted against temperatur
T* for various lattice sizes. For comments on errors, please
Fig. 8.

FIG. 10. The order parameter^P4& plotted against temperatur
T* for various lattice sizes. For comments on errors, please
Fig. 8.
5-6
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MONTE CARLO SIMULATION OF A PLANAR LATTICE . . . PHYSICAL REVIEW E 67, 011705 ~2003!
DF(j).1 we obtained the correlation length for our syste
of the order of 100 lattice spacings but the scaling relatio
obeyed very well down toL520.

The specific heat per particleCV* was obtained by two
methods. The energy per particleE* obtained from multiple
histogram reweighting was fitted against temperature usin
cubic spline and the derivative yieldedCV* @Eq. ~4!#. The
other method is the conventional fluctuation relation giv
by Eq. ~5!. The two sets of results agreed within statistic
error and Fig. 13 shows the variation ofCV* with temperature
for different values ofL, where the sharpening ofCV* at the
transition is evident and may be contrasted with its beha
obtained for the two-dimensionalP2 model by other inves-
tigators@4,5#. The order parameter susceptibility was eva
ated using Eq.~8! and its temperature variation for variou
values ofL is shown in Fig. 14. We have found that th
maxima of specific heat and susceptibility both scale asL2

and the plots are shown in Fig. 15.

FIG. 11. The free energyA generated by the multiple histogram
reweighting plotted against energy per particleE* for different lat-
tice sizes. The graphs are shifted vertically for clarity.

FIG. 12. The free-energy barrier heightDF plotted against lat-
tice sizeL with the linear fit represented by the straight line.~The
error bars for two points are of the dimensions of the symbols u
for plotting!.
01170
is

a

n
l

r

-

The finite size scaling relation

TC~L !2TC~`!;L2d ~25!

for a first-order phase transition was tested.TC(`) is the
thermodynamic limit of the transition temperatureTC which
can be obtained in a number of ways.TC

CV andTC
x , respec-

tively, represent the transition temperatures obtained fr
the peak positions of the specific heat and the order par
eter susceptibility,TC

F represents the transition temperatu
obtained from the fine tuning of the free energy vs ene
curve to obtain two equally deep minima, and finallyTC

P2

represents the transition temperature obtained from the p
tion of the peak of the derivative of theP2 vs T curves
obtained from histogram reweightings. Finally,TC

P4 repre-
sents the transition temperatures obtained from the peak
sition of the derivative of theP4 vs T curves. In Fig. 16, we
have plotted the transition temperatures obtained by th
methods againstL22. Expectedly, the slopes of these straig

d

FIG. 13. The specific heat per particleCV* plotted against tem-
peratureT* for different lattice sizes.~The error bars for most
points are of the dimensions of the symbols used for plotting!.

FIG. 14. The order parameter susceptibilityx plotted against
temperatureT* for different lattice sizes.~The error bars for most
points are of the dimensions of the symbols used for plotting!.
5-7
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A. PAL AND S. K. ROY PHYSICAL REVIEW E67, 011705 ~2003!
lines are marginally different but they all, in the thermod
namic limit L→`, converge to within a value 0.37
60.015. We have also estimated the pseudospinal temp
tures of the system forL5160 from fine tuning of the tem
perature and observation of the free energy vs energy cu
The temperatures areT150.3764 andT250.3749, respec-
tively.

The pair correlation functionG2(r ) given by Eq.~9! has
been plotted in Fig. 17 forL580 at T* 50.37, 0.374,
0.37575, and 0.3765 and in Fig. 18 forL5160 at T*
50.37525, 0.3757 and 0.3759. For temperatures lower t
the transition temperature,G2(r ) could be fitted accurately
to the power law decay to a plateau, (ar2p1c). For L
580 at T* 50.374 we obtainedp50.529 andc50.466,
whereas forL5160 atT* 50.37525 we hadp50.522 and
c50.316. For temperatures just above the transition,c van-

FIG. 15. The peak heights of specific heat per particleCV* and
susceptibilityx plotted againstL2 with the linear fits represented b
the straight lines.~Excepting one point, the error bars are of the s
of the symbols used for plotting!.

FIG. 16. The transition temperatureTc* obtained from~a! spe-
cific heat peak position,~b! susceptibility peak position,~c! fine
tuning of free energy curve,~d! peak position of the derivative o
^P2&, and~e! peak position of the derivative of^P4& plotted against
L22 along with the respective linear fits. The intercept on they axis
is 0.37660.015.
01170
ra-

e.

an

ished andp for both lattices was found to be 0.5. It may b
noted that the parameterc is nothing but the asymptotic
value of the pair correlation function and our simulation r
veals that it is very close to the square of the long ran
order parameter̂P2& at the respective temperatures.

We now turn to the topological quantities. The density
defects are plotted in Fig. 19 and shows an increase ab
the transition temperature. The derivativedD/dT* is plotted
in Fig. 20 and it may be noted that this quantity rapid
sharpens with increase in lattice size. Quantitative
dD/dT* scales asL, as shown in Fig. 21. We may recall tha
Holm and Janke@15# in a recent study have found in the ca
of the three dimensional Heisenberg model that the den
of defects behaves qualitatively like energy and its tempe
ture derivative like the specific heat, which are not in agr
ment with our finding. The density of defects vanishes in
ground state and shows an exponential behavior
(2E0 /T* ) at low temperatures,E0 being the activation en-
ergy for a pair of defects. For the 80380 lattice, we have
plotted the density of defects vs temperature in Fig. 22 wh

FIG. 17. The plots of the pair correlation functionG2(r ) against
r for the 80380 lattice for the temperatures indicated. The curv
are plotted forr ranging up toL/2.

FIG. 18. The plots of the pair correlation functionG2(r ) against
r for the 1603160 lattice for the temperatures indicated. The curv
are plotted forr ranging up toL/2.
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yields E0 5 2.93 which is almost an order of magnitud
greater than that obtained for theP2 model by Kunz and
Zumbach@5#.

The topological order parameter is denoted bym. It is
nonzero at low temperatures and vanishes atTc* . A quantity
(12m)/2 is plotted against temperature in Fig. 23 for latti
size up to 40340. These clearly show that defects play
dominant role in the phase transition exhibited by our mod

The autocorrelation timet of energy was obtained b
using the method proposed by Madras and Sokal@16# and
were found to be some orders of magnitude greater than
for the P2 model. Table I lists the autocorrelation time fo
different temperatures for differentL. It is evident thatt
shows a sharp increase in the neighborhood of the trans
temperature. The plot of lnt vs L is shown in Fig. 24 and
quantitatively we found thatt at TC scales with an exponen
Lf where we obtainedf52.7.

V. CONCLUSION

It may be concluded that the present work which involv
extensive Monte Carlo simulation reveals that the planar

FIG. 19. Plots of density of defectsD with temperatureT* for
different lattice sizeL. ~The error bars for most points are of th
dimensions of the symbols used for plotting!.

FIG. 20. The derivativedD/dT* plotted againstT* for different
lattice sizes.
01170
l.

at

on

s
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tice model with three-dimensional spins interacting with t
nearest neighbors with theP4 interaction exhibits a strong
first-order phase transition. This is remarkably different fro
the behavior of the other two-dimensional models wh
have been thoroughly investigated. TheXY model and the
nematic P2 model exhibit second-order phase transiti
while theO(3) Heisenberg model does not exhibit any tra
sition at all. The sharpening of the specific heat with incre
in lattice size and the agreement obtained with the vari
first-order scaling laws are in sharp contrast to the beha
of the planarP2 model. It may be noted that the symmet
breaking pattern of both models are the same and both t
sitions are driven by topological defects.

From the nature of the variation of the autocorrelati
time with lattice size and temperature, we may comment t
in the planarP4 model, the Wolff algorithm does not seem
reduce critical slowing down by any significant amount as
does to otherO(3) models. Usually, a cluster algorithm fai

FIG. 21. The peak height ofdD/dT* curves plotted agains
lattice sizeL and the linear fit.~Excepting one point the error bar
are of the size of the symbols used!.

FIG. 22. Density of defectsD plotted againstT* for L580
lattice. The continuous curve represents the functiona exp
(2E0 /T* ), where the constants area5269.33 andE052.929.~The
error bars for most points are of the dimensions of the symbols u
for plotting!.
5-9



a
n
r

us
or

e
t

th

f-
in

ure

to

on

A. PAL AND S. K. ROY PHYSICAL REVIEW E67, 011705 ~2003!
to result in efficient sampling when the cluster size for
given system is either too small or too large. It is evide
from our work why the Wolff algorithm does not work fo
this model. The reason is that the transition is a therm
first-order one. For a thermal first-order transition, the cl
ters are either too big~ comparable to the magnetization
the order parameter of the ordered phase! if the system is in
one of the ordered phases or too small~ comparable to the
correlation length! if the system is in the disordered phas
As a result, the time to go between ordered phases and
disordered phase is very long. The autocorrelation time in

FIG. 23. Plots of a quantity (12m)/2 with temperatureT* for
different lattice sizeL.
e,

ys

01170
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case of a planarP2 interaction behaves in a completely di
ferent manner. Apart being significantly smaller than that
the P4 model, it does not exhibit a peak at any temperat
and increases monotonically. For example, in an 80380 lat-
tice in the P2 model, t varies from 24 to 768 when the
reduced temperature changes from 0.5125 to 0.7@14#.
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FIG. 24. Logarithmic plot of the peak value of autocorrelati
time againstL.
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