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Monte Carlo simulation of a planar lattice model with P, interactions
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Monte Carlo study of a two-dimensional lattice with three-dimensional sgirs2(n=3) interacting with
nearest neighbors via-aP,(cos#) potential, whereP, is the fourth Legendre polynomial arflis the angle
between two spins, has been reported for lattice sizes ranging frondi@@ 160< 160. A cluster algorithm
for spin updating with a histogram reweighting technique has been used and finite size scaling has been
performed. The model exhibits a strong first order phase transition at a dimensionless temperature 0.376
+0.015. The phase transition appears to be driven by condensation of topological defects and the defect
densityD increases sharply at the transition temperature. The temperature derd@fi@@* is found to obey
a linear scaling relation with the lattice site The behavior of the model seems to be remarkably different
from the two-dimensionaP, model, that has been investigated by other authors, although both models possess
the same symmetry and topological defects play an important role in the phase transition.
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I. INTRODUCTION The model can easily be generalized to theomponent

spins and this may be defined as the nematector model

The n-vector O(n) models in two dimension are defined to distinguish it from the conventionatvector model which
by associating with each site of a two-dimensional lattice arwe described earlier. It may be noted that in addition to the

n-dimensional unit length spin vector. The Hamiltonian for ysualO(n) symmetry, this model posseses thesymmetry,

the O(n) models is of the same form as that of the Heiseny o e directionss(x) and —a(x) are equivalent. The
berg model, e '

three-dimensional nematic liquid crystal is characterized by
o the existence of topologically stable defects which are
- (a1,0), (1) known as disclination lines.

D A two-dimensional nematim-vector model withn=3,
where the sum is over the nearest neighbor b@nhd$ of the alsq called theRP? model, n the r'ecent past has been the
) - , , — subject of Monte Carl¢gMC) simulation by several groups of

lattice and ¢, 0;) is the inner product of the unit vectoss i estigators. One of the most interesting features ofRR2
and ;. Forn=2, this model reduces to the so called two- model is the existence of topologically stable defects even in
dimensionalX'Y model. It is well knowr[1] that this system  two dimensions. The order parameter space is the sfere
cannot possess conventional long range order and this igith opposite points identified and the homotopy group is the
literature is referred to as the Mermin-Wagner-Berezinskintegers modulo 2, i.el];(RP"!)=2Z, for n=3. Chiccoli
theorem. The system exhibits a second-order phase transiti@f al. [4] investigated the system for lattice sizes ranging
at the critical temperaturé.. Below T, the order param- from 5x5 to 80x80 and found that the heat capacity is
eter correlation function exhibits a quasi-long-range-insensitive to the system size, whereas in a system exhibiting
orde(QLRO), in which it decays algebraically with distance. a true phase transition, systematic sharpening of the heat
This was well explained in terms of topological defects bycapacity is expected. The order parameter correlation func-
Kosterlitz and Thoules$2], who demonstrated that vortex tion was found to decay algebraically in the low temperature
unbinding leads to the QLRO-disorder transition. The two-phase and exponentially in the high temperature phase. Noth-
dimensionalO(3) model, on the other hand, is disordered ating conclusive about the nature of the phase transition
all finite temperatures. It may be noted that the system caBmerged from this work. A more elaborate study of the sytem
have no stable topological defect as the spin vectors cagsing Monte Carlo method was subsequently carried out by
point outside the plankL]. Kunz and Zumbach5]. These authors found a strong evi-
In a nematic liquid crystal, one has spatially uncorrelatectjence for a topological phase transition driven by condensa-
spins  with the dominant interaction going like tion of defects. The transition was found to be associated
— P3(cosy;), wherey;; is the angle between the unit vectors with a divergence of correlation length and susceptibility and
o; and o; and P, is the second Legendre polynomial. A a cusp in the specific heat.
three-dimensional lattice model of the nematic was intro- About two decades ago, Zannd®i proposed a generali-
duced by Lebwohl and LashéB], where the Hamiltonian zation of the Maier-Saupe mean field theory of nematic lig-
can be written as uid crystals. Besides, using the us®gl(cosé;) term of the
orientational part of the anisotropic interactions between the

B 2 P,(CoSy) @) molecules, the author also investigated the higher rank inter-
o 2 Yig)s actions likePy(cosé;) with M=4,6. The findings demon-
strated that with increasing values bf, the nature of the
(i,j) being the nearest neighbor pairs. transition becomes more markedly first order, in which the
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entropy and the order parametéPg)) at the transition in- located at each site and interacting with nearest neighbors via
creases. Subsequently, Monte Carlo simulations of a genethe Hamiltonian

alization of a three-dimensional Lebwohl-Lasher were car-

ried out by Chiccoliet al. [4] and by Romanq[7] for

interactions of the typeP, and Pg, respectively, and the H:-E P4(cosy;j). 3
findings are in agreement with the predictions of Zannoni i

[6]. This trend can be qualitatively understood in a mean

field framework in the following manner. The mean field The specific heat is given by

potential which is proportional t&,(cosé), whered is the

angle between a molecule and the director khdven pos-

sessesl +2)/2 minima for @ lying in the rangdq 0,77] and . d

the minima at¥=0 andw become narrower and steeper with Cv= dT* (H), )
increasingM. Thus, with increase in the rank of the interac-

tion, there is a possibility for the molecules to get trapped in

any of the M —2)/2 local minima rather than being com- whereT* is the dimensionless temperatuf&; can also be
pletely aligned along the director. A molecule may, howevergevaluated from the energy fluctuation

eventually get ordered along the director when it suddenly

jumps out of a local minimum trap to get into ti#e=0 or 7 ((HA—(H)?)
position where the potential well is deeper. Cy= ) (5)
More recently, Zhanget al. [8] and Priezjevet al. [9] T

have included aP, term in their study of the three-

dimensional LebwphI—Lasher_ model and havg fpund that thishe conventional long range order parameter is given by
makes the otherwise weak first-order nematic-isotropic tran-
sition stronger first order.

The above mentioned research for three-dimensional sys-
tems and, in particular, the extensive MC study of a two-
dimensional system witR, interaction motivated us to take
up the present work.

In a recent work{10], we reported a limited amount of
numerical study of another two-dimension@(3) system
where the spins on a square lattice interact with the neare
neighbors via a—P,(cosy;) interaction, whereP, is the
fourth Legendre polynomial. The symmetry breaking pattern
of the P, and P, interactions are identical and topologically
both models have the same homotopy class. It is, therefore,
of some Interest to see if they behave S|mllarly. Qur InItIaIThe order parameter susceptibility is defined in terms of the
results indicated that there is a marked difference in the begluctuations of the order paramet@®,)
havior of the two models as the specfic heat was found t P 2
sharpen with the increase in lattice size. The free energy also
exhibited a double-well structure which is indicative of a (P —(P2)?)
first-order phase transition. The statistics of our work was, X= N (8)
however, not good enough to reveal the finer details of the
scaling behavior of various thermodynamic quantities that _ ) o )
one would expect to be obeyed in a first-order phase transilhe second rank pair correlation coefficient is defined as
tion.

In this paper, we present the results of a more elaborate Go(r)=(Py(cosb;j));, 9
numerical study of the two-dimension@l(3) model with

the — P,(cosy;) interaction. We have significantly improved wherei and] are two spins separated by a distance

on our previous work in terms of a bigger lattice size and The topological defects present in this model will be de-
greatly improved statistics and these resulted in different angcribed using the approach followed by Kunz and Zumbach

interesting findings about the, model. We may point out Lo : : .
that the scaling behavior of some of the thermodynami&s]' The unit spin vectors at two neighboring siteandy are

quantities which emerged from the present work are qualita?(*) anga(y). One can always map these spins on the unit
tively different from what was reported in our previous work SPhereS” and connect them by the shortest geodesic. Fol-
on theP, model. lowing this procedure and starting from a closed |lobmwn

the lattice, one ends up in a loop on the manifBl#?. The
Il. THE DEFINITION OF THE THERMODYNAMIC homotopy class of the map is given by
QUANTITIES RELATED TO THE P, MODEL

1
<P2)=§<3 cogh—1), (6)

where 6 is the angle that a spin makes with the preferred
direction of orientation and the average is over the entire
§tample. The next higher rank order parameter is defined as

1
<P4>=§<3500§0—3000§9+3>. 0

The Monte Carlo simulation was carried out on a square WA= [T sgicx),o(y)]. (10)
lattice of dimensiorL X L with the three-dimensional spins (xy)eA

Xy) €

011705-2



MONTE CARLO SIMULATION OF A PLANAR LATTICE.. .. PHYSICAL REVIEW E 67, 011705 (2003

For W(A)=+1, the loop would enclose an even number of The various thermodynamic quantities were computed us-
defects and folW(A)=—1, an odd number of defects. This ing the histogram reweighting technique of Ferrenberg and
definition, however, fails for the exceptional case whenSwendser{12]. Briefly the method works as follows. The

[é(x),(;(y)] vanishes. partition function of the system is given by
It is possible to extend the above procedure to define the
density of defects as Z(K)=>, W(S)exgKS], (15)
S
1
D= 5[1—<W(A1)>], (1)  whereK=—1/KgT, Kg being the Boltzmann constant set

equal to 1.S=3; ;P4(cosy;) is a function of the spins of the

where A, is a closed loop attached to a unit square on theéystem andW(S) is the density of states. Suppose tfat
lattice. It vanishes in the ground state and is expected tdlonte Carlo simulations have been performed at tempera-
show an exponential increase like exqif,/T*) at low tem-  turesK,,n=1,... R and the data has been stored as histo-
peraturesE, being the activation energy of a pair of defects. 9rams{N,(S)} with the total number of configurations is

A topological order parameter which is a measure of théln=2n-1N,. If 7, is the autocorrelation time, then we de-
pairing of defects is defined in the following manner. With fine a quantityg,=1+27,. Then the essential multiple-
the periodic boundary conditions imposed, our two-histogram equation for the probabiliy(S,K) is written as
dimensional lattice would look like a torus. The topological

R
order parameter is defined as _
P 3, 9n "Na(S)exKS]
pr={W(Ao)), (12 P(SK)= ¢ : (16)
-1

where A, is a circle enclosing the torus. At low tempera- mzzl NmGm XA KnS—fml
tures, where few defects are expected to be pregesihould
be nonzero and should vanish at high temperatures. where the free energg;, is given by

IIl. THE COMPUTATIONAL DETAILS eXp{fn}= ZS P(S,K,). (17)

The Monte Carlo simulations were performed on square
lattices of sizeL.* for L=10,20,40,80, and 160. Instead of The average value of any operator®nan be evaluated as a
the conventional single spin-flip Metropolis algorithm, we fynction of K from
use the cluster algorithm of Wolff11]. The method is er-
godic and satisfies the detailed balance condition. The algo-

rithm runs as follows. <A(S)>(K):ES A(SP(S,K)/z(K), (18)
(1) A random unit vector is taken and a spin flip;X
— o) is defined as where
oy =0y—2(0, 1T 13 2K)=3 P(S,K). (19)
S
(2) Bonds ,y) of the lattice are activated with a probabil- _ ) )
ity The values of, could be found self-consistently by iterating
Eqgs.(16) and Eq.(17). For all lattice sizes and for all tem-
p(x,y)=1—expmin{0,8ss}), (14) peratures; a straightforward iteration of these equations
worked very satisfactorily.
where, When simulating an unknown system, one is always faced
5 with two issues. The nature of the phase transition is first to
S5=S4[ 35(s3—254) — 193], be resolved and, subsequently, the various thermodynamic
quantities are to be determined. The order of the phase tran-
S4=51S2(S3~5152), sition can conveniently be determined by the method first
proposed by Lee and KosterlifzZl3]. For a temperature
ss=(a},0,'), driven first-order transition in a finite system of volurh&
with periodic boundary conditions the histogram of the en-
SZ:(;,;), ergy distribution may be computed by Monte Carlo simula-
y tion to yield
$1= (0%, N(E;8,L)=NZ"%B,L)Q(E,L)exp(— BE), (20
and a cIuster_ of gctivated bonds is thus_ constructed._ where B=1/T, X is the number of MC sweepg, is the
_ (3) All spins in a cluster are now flipped according 0 partition function, and(E,L) is the number of states of
oy— 0y energyE. For the two-dimensionaP, model, we have in-
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FIG. 1. The histograms fdE*, the average energy per particle
generated for the 160160 lattice for theP, model at 11 tempera-

tures indicated.

PHYSICAL REVIEW E67, 011705 (2003

0.025 T T T T T T T

T=0.375250 ——

20.375600 -

T=0.375700 --

T=0.375750 -
5300

T=0.375850 -
T=0.375900 -
T=0.375950 -
T=0.376000 - ---
T=0.376125 ——
T=0.376250 ——-—-

0.015

Probability

0.1 0 0.1 0.2 03 04 0.5 06 07
<P>

FIG. 3. The histograms for the order parametBy) for the
160x 160 lattice for theP, model at the temperatures indicated.

Clearly, the temperature at which the double-well structure

vestigated thaN(E;B,L) has a characteristic double-peak of A has two equally deep minima gives a precise estimation

structure in the neighborhood ®f . The two peaks &E4(L)

of the transition temperature.

and E,(L) corresponding, respectively, to the ordered and

disordered states are separated by a minimuB,4L). We

define a free-energy-like quantity
A(E;B,L,R)=—InN(E;B,L)
and the bulk free-energy barrier is defined as

It may be noted tha”A(E;;B,L)=A(E,;B,L) and AF is
independent oK. For a continuous transitiodF(L) is in-
dependent ok and for a first-order transition it is an increas-
ing function ofL. If one is in a region wherk is sufficiently
large so that_>¢, where¢ is the correlation lengtiil3],

thenAF obeys the scaling relation
AF~LL,

0.03 T T T T T T

(21)

. (22

(23

160x160

0.025 -

VLA
SELLELEEELS
YL BwLLn

0.02

0.015 -
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0.005 [ £/

HR A

w0
Pl
88
=34
=23

[ 0.1 0.2 03 0.4 05 06
<P>

FIG. 2. The histograms for the order parametes) generated

IV. RESULTS AND DISCUSSION

The MC simulations were performed far=10, 20, 40,
80, and 160 using the cluster algorithm of Wolff described in
the preceding section. For each lattice size, about 10-12
temperatures close to transition were chosen for the simula-
tion. In Figs. 1-3, we have depicted the histograms gener-
ated forE*, the average energy per particle, the order pa-
rameter P,) and the order parametéP,) for L=160. It is
clear from the histograms that there is a temperature region
where the MC sampling takes place between the ordered and
the disordered phases. These diagrams are in sharp contrast
to those obtained for the two-dimensiorid) model for L
=80 (Figs. 4 and bfor energy and P,), respectively14].

In Table I, we have presented the details of our simula-
tion. For each lattice size, the simulations were carried out
for the temperatures indicated. The number of Wolff clusters

0.12 T T T T =
T=0.
041 E
T20.568750
T=0.571875
T=0.575000
T£0.578125
0.08 - T=0.581250 1
T=0.584375
T=0.587500
2 T=0.593750
i T=0.600000
S 006 E
4
o
0.04 [ E
0.02 [ g
0 .
-1.35 -1.05

FIG. 4. The histograms for energy per partiét® generated

for the 160< 160 lattice for theP, model at the temperatures indi- for the 80<80 lattice for theP, model [14] at 15 temperatures

cated.

indicated.
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TABLE I. T* is the dimensionless temperatutejs the lattice sizen, is the number of Wolff clusters, which for all lattices except
160x 160 and at all temperatures is®1@c) is the average cluster size, MCS is the number of equivalent Monte Carlo sygeep@xt in
units of 10, andr is the autocorrelation time for energiyn units of Wolff clusters.

L=160
T 0.37525 0.3756 0.3757 0.37575 0.3758 0.37585 0.3759 0.37595 0.376  0.376125 0.37625
Ne 10° 5x10° 5x10° 101 5x10° 5x10° 10° 10° 10° 10° 10°
(c) 17157 17095 17094 17079 16892 16848 16825 16796 16781 16763 16759
MCS 0670 3.338 3338  6.671 3.299 3.219 0.657 0.656 0.655 0.654 0.654
T 3932 6154 182302 420000 190332 76334 48813 40000 11600 3596 2986
L=80
T 0.37 0372 0374 0375 037575 0.376 0.37625 0.3765 0.37675  0.377 0.378  0.38
(c) 4569 4529 4461 4419 4367 4331 4269 4214 4183 4169 4114 4021
MCS 0714  0.707  0.697 0.69 0.682 0.677 0.667 0.658 0.654 0.651 0.643  0.628
T 204 261 617 1130 18806 33832 48653 16024 15958 7112 718 409
L=40
T 0.36 0365 037 03725 0.375 0.376 0.377 037725 03775 0.37825 0.38 0.39
(c) 1210 1195 1173 1159 1138 1130 1098 1092 1080 1052 1017 893
MCS 0756 0747 0.733  0.724 0.711 0.706 0.686 0.683 0.675 0.658 0.636  0.558
T 86 104 168 267 1610 6400 7895 9097 5813 4497 645 73
L=20
T 0.35 0.36 0.37 0.375 0.378 0.38 0.383 0.39 0.41 0.43
(c) 315 311 303 295 287 280 263 236 179 123
MCS 0788 0.778 0.758  0.736 0.716 0.700 0.658 0.590 0.448 0.308
T 67 77 154 784 934 1157 853 171 32 17
L=10
T* 0.35 0.36 0.37 0.38 0.385 0.39 0.40 0.41 0.42 0.43
(c) 81 80 79 76 73 70 62 56 51 46
MCS 0810 0.800 0.790  0.760 0.730 0.700 0.620 0.560 0.510 0.460
T 61 96 134 191 246 247 145 68 38 21

generated ranges from 4@ 10'° and the average cluster size varied from 67% to 65.5%, for the temperature range
size for each temperature is also shown in the table. It isve studied(It must, however, be noted that this may be due
evident from the table that for a given lattice, the averageo a smaller temperature range over which the simulations
size of the Wolff cluster decreases with increase in temperawere carried out for the larger lattigesVe have also pre-
ture. The maximum cluster size occurred for the smallestented the equivalent number of MC sweeps and the auto-
lattice, namely, 81.4% and this decreased with increase igorrelation time(in the number of Wolff clustepsin the

the lattice size. For thé =160 lattice, the average cluster

0.01

0.009

0.008

0.007

0.006

0.005

Probability

0.004

0.003

0.002

0.001

Percentage Of Error

03
<P>

L-160 —

FIG. 6. The percentage error in the reweighted histograms plot-
FIG. 5. The histograms for the order parametBs) for the ted againstE* for L=160. The graph has been obtained using
80X 80 lattice for theP, model[14] at the temperatures indicated. Eq. 24.
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"L-80 ——

Percentage Of Emor

FIG. 7. The percentage error in the reweighted histograms plot- /G- 9. The order paramet¢P,) plotted against temperature
ted againstE* for L=80. The graph has been obtained using |~ fOF various lattice sizes. For comments on errors, please see

Eq. 24. Fig. 8.

table. One MC sweep has been taken as the amount of corhereas it is about 0.7% near the energies where the histo-
puter run where all particles in a lattice have been on averaggrams have peaks. It may be pointed out that it will be a very
flipped once. The autocorrelation time increases rapidly wittdifficult task to reduce the errors in the neighborhood of
the increase in lattice size and possesses a sharp maximumidt=—1.22. This is evident because of the nature of the

the transition temperature. histograms(Fig. 1). The configurations generated have two
The error in estimating the probabilif(S,K) in the his- more or less sharp peaks with relatively few configurations
tograms is given by lying in the mid-range. Increasing the number of configura-

tions further is unlikely to reduce the error in the region
between the peaks by any significant amount.
P(S,K). (24 The histogram reweighting of these results yielded the
} variation of energy and order parameters as functions of tem-
perature(Figs. 8, 9, and 10 The reweighting technique of
. . . : Ferrenberg and Swendsen was evoked also to generate the
Th'.s COU'Q be estimated directly fFO"‘ the histograms. Thefree-energy-like guantitd from the energy histograms and
error is maximum for the largest lattice where the autocorre:the free-energy barrieAF(L) could be obtained. A plot of
lation time is Iarge: Figures 6 and 7 show the re!ative error infree energyA vs energyE* for different values ot is shown
P(S,i(l for the lattices. =80 and 160. In the nelghborhoog in Fig. 11, which clearly shows how the barrier height grows
of E* =—1.22, the error has a peak value of about 3.5%yih | The scaling relation Eq23) has been tested in Fig.
12 whereAF has been plotted againstand a good linear fit
has been obtained. It may be remarked that from the relation

SP(S,K)=
@ g5 'NL(S)

0.8 T
o7k T

06 |

05

A
o 04
v
03
i 1 1 i 1 1 1 02
0.35 0.36 0.37 0.38 0.39 04 [1X0] 042 0.43
T 01 |
FIG. 8. The average energy per parti€lé plotted against the 0 . . : X , , )
dimensionless temperaturg* for different lattice sizes. These 0% 0% 0w 0% 0R 04 o4 04z 043
graphs have been generated from the energy histograms shown in
Fig. 1 using the multiple histogram reweightifigq. 15—18 of text FIG. 10. The order parametéP,) plotted against temperature
An idea of the error involved in these plots may be obtained fromT* for various lattice sizes. For comments on errors, please see
the error plots in Figs. 6 and 7. Fig. 8.
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60 600 T T T T T T T
70 F
500 | 4
-80 |
400 | J
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-100 | :
L
200 |
10 ¢
aml 100 -
130 1 1 L L 1 1 0 1 L L h I 1
18 16 1.4 1.2 10 -08 0.6 -04 -0.2 037 0372 0374 0376, 0378 038 0382  0.384
£ T

FIG. 11. The free energi generated by the multiple histogram FIG. 13. The specific heat per partidl; plotted against tem-
reweighting plotted against energy per partigfe for different lat-  peratureT* for different lattice sizes(The error bars for most
tice sizes. The graphs are shifted vertically for clarity. points are of the dimensions of the symbols used for plokting

AF(£€=1 we obtained the correlation length for our system The finite size scaling relation
of the order of 100 lattice spacings but the scaling relation is 4
obeyed very well down td = 20. Te(L)=Te(=)~L (25
The specific heat per particley, was obtained by two
methodsPThe energyF;)er r;))articEEe‘vobtained from mLﬁtipIe for a first—ord_er _ph_ase transitior] was testdg(«) is Fhe
histogram reweighting was fitted against temperature using 'érmodynamic limit of the transition temperatuirg which
cubic spline and the derivative yieldegt, [Eq. (4)]. The ¢an be obtained in a number of wayie:" and T¢, respec-
other method is the conventional fluctuation relation giventively, represent the transition temperatures obtained from
by Eq. (5). The two sets of results agreed within statisticalthe peak positions of the specific heat and the order param-
error and Fig. 13 shows the variation@f, with temperature ~ eter susceptibilityTc represents the transition temperature
for different values oL, where the sharpening &, at the obtained from the fine tuning of the free energy vs %nergy
transition is evident and may be contrasted with its behaviofurve to obtain two equally deep minima, and finally®
obtained for the two-dimension&l, model by other inves- represents the transition temperature obtained from the posi-
tigators[4,5]. The order parameter susceptibility was evalu-tion of the peak of the derivative of thB, vs T curves
ated using Eq(8) and its temperature variation for various obtained from histogram reweightings. FinalljL* repre-
values ofL is shown in Fig. 14. We have found that the sents the transition temperatures obtained from the peak po-
maxima of specific heat and susceptibility both scald-as  sition of the derivative of thé@, vs T curves. In Fig. 16, we
and the plots are shown in Fig. 15. have plotted the transition temperatures obtained by these
methods againdt 2. Expectedly, the slopes of these straight

1.6
2000
14 |
1800 | 4
12 1600 | J
1 | 1400 [ E
) 1200 | L] i
08
»
1000 | -
06
800 | b
04 [ 600 | l J
02| 400 | B
o A . s X . . . . 20 -y T
0 20 40 60 80 100 120 140 160 _ o _.._“‘ — -
L 0 0.37 0.372 0374 . 0.378 0.38 0.382 0.384
T
FIG. 12. The free-energy barrier heighF plotted against lat-
tice sizeL with the linear fit represented by the straight lifi€he FIG. 14. The order parameter susceptibiljtyplotted against
error bars for two points are of the dimensions of the symbols usetemperaturel* for different lattice sizes(The error bars for most
for plotting). points are of the dimensions of the symbols used for ploiting
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2200 T
Specific Heat  +
Susceptibility  x

2000 |- i - 80x80
Y 07t
1800 |
1600 | 1 i
L T=0.37
1400 05
:;E'; 1200 | T=0.374
2 =
04 037575
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600 |- n

400 |-

200 &

. T=0.3765
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. \ \ \ \
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K

FIG. 15. The peak heights of specific heat per part@feand FIG. 17. The plots of the pair correlation functi@(r) against
susceptibilityy plotted against.* with the linear fits represented by ¢ for the 80 80 lattice for the temperatures indicated. The curves
the straight lines(Excepting one point, the error bars are of the size4ye piotted forr ranging up tol/2.
of the symbols used for plotting

ished andp for both lattices was found to be 0.5. It may be

lines are marginally different but they all, in the thermody- noted that the parameter is nothing but the asymptotic
namic limit L—o, converge to within a value 0.376 value of the pair correlation function and our simulation re-
+0.015. We have also estimated the pseudospinal tempergeals that it is very close to the square of the long range
tures of the system fdr =160 from fine tuning of the tem- order paramete{P,) at the respective temperatures.
perature and observation of the free energy vs energy curve. We now turn to the topological quantities. The density of
The temperatures afe" =0.3764 andlT ~ =0.3749, respec- defects are plotted in Fig. 19 and shows an increase above
tively. the transition temperature. The derivatyB/dT* is plotted

The pair correlation functio®,(r) given by Eq.(9) has in Fig. 20 and it may be noted that this quantity rapidly
been plotted in Fig. 17 fol.=80 at T*=0.37, 0.374, sharpens with increase in lattice size. Quantitatively,
0.37575, and 0.3765 and in Fig. 18 far=160 at T* dD/dT* scales a, as shown in Fig. 21. We may recall that
=0.37525, 0.3757 and 0.3759. For temperatures lower thaiolm and Jank§15] in a recent study have found in the case
the transition temperatur&,(r) could be fitted accurately of the three dimensional Heisenberg model that the density
to the power law decay to a plateawar(P+c). For L of defects behaves qualitatively like energy and its tempera-
=80 at T*=0.374 we obtainedp=0.529 andc=0.466, ture derivative like the specific heat, which are not in agree-
whereas forL =160 atT* =0.37525 we hap=0.522 and ment with our finding. The density of defects vanishes in the
c=0.316. For temperatures just above the transitiowan-  ground state and shows an exponential behavior exp
(—Ep/T*) at low temperatures, being the activation en-
ergy for a pair of defects. For the 880 lattice, we have
plotted the density of defects vs temperature in Fig. 22 which
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FIG. 16. The transition temperatufié obtained from(a) spe-

-0.1

cific heat peak position(b) susceptibility peak positionic) fine ° 10 2 30 “ 5o 60 o 8o
tuning of free energy curved) peak position of the derivative of

(P,), and(e) peak position of the derivative ¢P,) plotted against FIG. 18. The plots of the pair correlation functi@y(r) against

L 2 along with the respective linear fits. The intercept onytlaeis r for the 160< 160 lattice for the temperatures indicated. The curves
is 0.376-0.015. are plotted forr ranging up toL/2.
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FIG. 19. Plots of density of defecB with temperaturel* for FIG. 21. The peak height oiD/dT* curves plotted against
different lattice sizel. (The error bars for most points are of the lattice sizeL and the linear fit(Excepting one point the error bars
dimensions of the symbols used for plotting are of the size of the symbols uged

yields E; = 2.93 which is almost an order of magnitude tice model with three-dimensional spins interacting with the
greater than that obtained for ti#®, model by Kunz and nearest neighbors with the, interaction exhibits a strong
Zumbach[5]. first-order phase transition. This is remarkably different from
The topological order parameter is denoted by It is  the behavior of the other two-dimensional models which
nonzero at low temperatures and vanishe$zat A quantity — have been thoroughly investigated. TH& model and the
(1—u)/2 is plotted against temperature in Fig. 23 for latticenematic P, model exhibit second-order phase transition
size up to 4 40. These clearly show that defects play awhile theO(3) Heisenberg model does not exhibit any tran-
dominant role in the phase transition exhibited by our modelsition at all. The sharpening of the specific heat with increase
The autocorrelation timer of energy was obtained by in lattice size and the agreement obtained with the various
using the method proposed by Madras and S¢ké] and first-order scaling laws are in sharp contrast to the behavior
were found to be some orders of magnitude greater than thaf the planarP, model. It may be noted that the symmetry
for the P, model. Table I lists the autocorrelation time for breaking pattern of both models are the same and both tran-
different temperatures for differert. It is evident thatr  sitions are driven by topological defects.
shows a sharp increase in the neighborhood of the transition From the nature of the variation of the autocorrelation
temperature. The plot of Invs L is shown in Fig. 24 and time with lattice size and temperature, we may comment that
quantitatively we found that at T scales with an exponent in the planaiP, model, the Wolff algorithm does not seem to
L¢ where we obtained=2.7. reduce critical slowing down by any significant amount as it

does to othe©(3) models. Usually, a cluster algorithm fails
V. CONCLUSION

0.09 T T T T T T
It may be concluded that the present work which involves

extensive Monte Carlo simulation reveals that the planar lat- [
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} : FIG. 22. Density of defect® plotted againsfT* for L=80
0375 0878 0377 . 03 0479 038 lattice. The continuous curve represents the functimexp
(—Eo/T*), where the constants ase=269.33 andE,=2.929.(The
FIG. 20. The derivativelD/dT* plotted againsT* for different  error bars for most points are of the dimensions of the symbols used
lattice sizes. for plotting).

011705-9



A. PALAND S. K. ROY PHYSICAL REVIEW E67, 011705 (2003

0.55

05 -

045 |
04

Qo3|
-3

= o3}

025 |

02

. . . . . . . .
0.34 035 0.36 0.37 0.38 0.39 0.4 o4 0.42 0.43 o L L L L L L L 1
T [ 20 40 60 80 100 120 140 160

FIG. 23. Plots of a quantity (% «)/2 with temperaturd™ for

. . . . 24, i ic plot of the peak value of autocorrelation
different lattice sizel. FIG. 24. Logarithmic p peak valu u i

time against.

case of a planaP, interaction behaves in a completely dif-

to result in efficient sampling when the cluster size for a]c i Apart bei anificantl ller than that i
given system is either too small or too large. It is evident erent manner. Apart being significantly smatler than that in

from our work why the Wolff algorithm does not work for the P, model, it does not exhibit a peak at any temperature

this model. The reason is that the transition is a thermaflnd increases monotonically. For example, in ax 80 lat-

first-order one. For a thermal first-order transition, the clus-tICe in the P, model, 7 varies from 24 to 768 when the

ters are either too hig comparable to the magnetization or reduced temperature changes from 0.5125 to 4.
the order parameter of the ordered phaséhe system is in
one of the ordered phases or too sn{atiomparable to the
correlation lengthif the system is in the disordered phase. We acknowledge the computer facility made available to
As a result, the time to go between ordered phases and thes at the ICOSER centérevel Il computer facility of DS
disordered phase is very long. The autocorrelation time in that the IACS, Calcutta.
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